

Dangerous Derivatives: New Systemic Risks in Financial Networks with Credit Default Swaps

Steffen Schuldenzucker, Sven Seuken, Stefano Battiston

FINEXUS Conference on Financial Networks and Sustainability January 19, 2018 Zurich

We study financial networks of debt and CDSs

Debt Contract:

A has to pay to B \$2.

Credit Default Swap (CDS):

A has to pay to B \$2 x (1 – recovery rate of C).

We study financial networks of debt and CDSs

We study the **Clearing Problem** to understand the behavior of CDS networks

- Given: Financial network, exposed to a shock
- Determine: For each bank: In default? Recovery rate?
- Model: Eisenberg/Noe + Costs of bankruptcy + CDSs
- Without CDSs: Easy!

clearing problem ≠ clearing house

CDSs can give rise to **Default Ambiguity**

- The clearing problem may have **no solution**
- \rightarrow Cannot decide who's in default
- \rightarrow Delays bank's resolution
- $\bullet \rightarrow \mathsf{Network} \text{ stress tests inconclusive}$

Dependency analysis lets us evaluate policies for effectiveness against default ambiguity

- Banning naked CDSs is effective
- Central counterparty clearing is *not* effective

CDSs pose new computational challenges

- No clearing algorithm guaranteed efficient in the worst case
 - Computational complexity: NP-hard / PPAD-hard
- Standard algorithms don't work any more
- \rightarrow Stress-testing with CDSs not easily possible
- Specialized algorithms needed (Work in progress)

Future Work

- Simulation Framework ← Random networks with CDSs
- Effects of these new risks, e.g., on CDS prices?
- Endogenous formation of the CDS network